Abstract

Word reordering is one of the fundamental problems of machine translation, and an important factor of its quality and efficiency. In this paper, we introduce a novel reordering model based on an innovative structure, named, phrasal dependency tree including syntactical and statistical information in context of a log-linear model. The phrasal dependency tree is a new modern syntactic structure based on dependency relations between contiguous non- syntactic phrases. In comparison with well-known and popular reordering models such as the distortion, lexicalized and hierarchical models, the experimental study demonstrates the superiority of our model regarding to the different evaluation measures. We evaluated the proposed model on a PersianEnglish SMT system. On average our model retrieved a significant impact on precision with comparable recall value respect to the lexicalized and distortion models, and is found to be effective for medium and long-distance reordering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.