Abstract

Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain challenging in overcoming the current limitations of chemoimmunotherapy. An antitumor chemoimmunotherapy system comprising bioorthogonal reaction-ready group tetrazine (TZ) modified with an anti-PD-L1 antibody (αPD-L1TZ) and TZ-activatable prodrug vinyl ether-doxorubicin (DOX-VE) for self-reinforced anti-tumor chemoimmunotherapy is proposed. The αPD-L1TZ effectively disrupts the PD-L1/PD-1 interaction and activates the DOX prodrug in situ through the bioorthogonal click reaction of TZ and VE. Conversely, the activated DOX upregulates PD-L1 on the surface of tumor cells, facilitating tumor accumulation of αPD-L1TZ and enhancing DOX-VE activation. Furthermore, the activated DOX-induced immunogenic cell death of tumor cells, substantially improving the response efficiency of αPD-L1 in an immune-suppressive tumor microenvironment. Thus, PD-L1 blocking and bioorthogonal in situ prodrug activation synergistically enhance the antitumor efficacy of the chemoimmunotherapy system. Therefore, the system significantly enhances αPD-L1 tumor accumulation and prodrug activation and induces a robust immunological memory effect to prevent tumor recurrence and metastasis. Thus, a feasible chemoimmunotherapy combination regimen is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.