Abstract

Although doxorubicin (DOX) is one of the most potent antitumor agents available, its clinical use is limited because of the risk of severe cardiotoxicity often leading to irreversible congestive heart failure. Apoptotic cell death is a key component in DOX-induced cardiotoxicity, but its trigger(s) and mechanisms are poorly understood. Here, we explore the role of peroxynitrite (a reactive oxidant produced from the diffusion-controlled reaction between nitric oxide and superoxide anion) in DOX-induced cell death. Using a well-established in vivo mouse model of DOX-induced acute heart failure, we demonstrate marked increases in myocardial apoptosis (caspase-3 and 9 gene expression, caspase 3 activity, cytochrome-c release, and TUNEL), iNOS but not eNOS and nNOS expression, 3-nitrotyrosine formation and a decrease in myocardial contractility following DOX treatment. Pre-treatment of mice with peroxynitrite scavengers markedly attenuated DOX-induced myocardial cell death and dysfunction without affecting iNOS expression. DOX induced increased superoxide generation and nitrotyrosine formation in the mitochondria, dissipation of mitochondrial membrane potential, apoptosis (cytochrome-C release, annexin V staining, caspase activation, nuclear fragmentation), and disruption of actin cytoskeleton structure in cardiac-derived H9c2 cells. Selective iNOS inhibitors attenuated DOX-induced apoptosis, without affecting increased mitochondrial superoxide generation, whereas NO donors increased DOX-induced cell death in vitro . The peroxynitrite scavengers FeTMPyP and MnTMPyP markedly reduced both DOX- or peroxynitrite-induced nitrotyrosine formation and cell death in vitro , without affecting DOX-induced increased mitochondrial superoxide formation. Thus, peroxynitrite is a major trigger of DOX-induced apoptosis, and its effective neutralization can be of significant therapeutic benefit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.