Abstract
This paper describes a synergistic approach that is applicable to a wide variety of system control problems. The approach utilizes a machine learning technique, goal-directed conceptual aggregation (GDCA), to facilitate dynamic decision-making. The application domain employed is Flexible Manufacturing System (FMS) scheduling and control. Simulation is used for the dual purpose of providing a realistic depiction of FMSs, and serves as an engine for demonstrating the viability of a synergistic system involving incremental learning. The paper briefly describes prior approaches to FMS scheduling and control, and machine learning. It outlines the GDCA approach, provides a generalized architecture for dynamic control problems, and describes the implementation of the system as applied to FMS scheduling and control. The paper concludes with a discussion of the general applicability of this approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have