Abstract

The paper discusses the problem of speed and rotor flux magnitude estimation for the induction motor (IM) drive and presents a sliding mode observer (SMO) that is constructed based on the IM model in the synchronous reference frame. To implement the control scheme of the IM drive, generally, the speed and the flux magnitude are needed. In a control scheme with speed and flux regulation, they are used for d and q axis feedback. If the current control scheme uses a decoupling compensator, the flux and speed are needed to compute the decoupling voltages. The paper develops a SM observer for the flux magnitude based on the synchronous reference frame model of the IM. The method assumes that the d-q voltages and currents are available. The observer requires knowledge of the motor speed - instead, the SMO is fed with a speed estimate (assumed inaccurate). Using a specific gain design, the SMO is made insensitive to the input speed inaccuracy. Using the equivalent controls of the observer, the initial speed estimate is corrected to obtain two secondary speed estimates. A weighted average speed estimate that combines the secondary estimates is also shown. The theoretical findings are supported with simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.