Abstract

In this paper, we propose a decomposition approach to differential eigenvalue problems with Abelian or non-Abelian symmetries. In the approach, we divide the original differential problem into eigenvalue subproblems which require less eigenpairs and can be solved independently. Our approach can be seamlessly incorporated with grid-based discretizations such as finite difference, finite element, or finite volume methods. We place the approach into a two-level parallelization setting, which saves the CPU time remarkably. For illustration and application, we implement our approach with finite elements and carry out electronic structure calculations of some symmetric cluster systems, in which we solve thousands of eigenpairs with millions of degrees of freedom and demonstrate the effectiveness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.