Abstract
With an increasing number of antennas and users, the complexity increases dramatically, in order to simplify the process. In this paper, We propose existed algorithms discussing their principles and their advantages as well as the comparison between each method and then we provide the possible improvement in theory changing steps in iteration process to avoid the matrix inversion, by introducing a pre-conditioned gradient (PCG) method and further improved Jacobi method and using Neumann-series terms to estimate an approximate matrix inversion and the Gauss-Seidel (GS) method with a diagonal-approximate initial solution to the method and biconjugate gradient stabilized (BICGSTAB) method and above all of the methods are based on the minimum mean square error (MMSE) detector including the application in multi-user MIMO system. Another approach is from a signal detector based on symmetric successive over relaxation (SSOR) method without matrix inversion and Neumann series based on the zero forcing signal detector. The third algorithm uses a modified version of the conjugate gradient least square (CGLS). These methods are mainly replacing the inversion process into iteration process to reduce the complexity of the algorithm not only replacing the stages but optimizing the speed from setting the initial solution as well as the improvement using the Neumann-series to replace the iteration part. Finally, we proposed a symmetric successive overrelaxation (SSOR) based Gauss-Seidel for massive MIMO detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.