Abstract

Fractional calculus is an increasingly recognized important tool for modeling complicated dynamics in modern engineering systems. While, in some ways, fractional derivatives are a straight-forward generalization of integer-order derivatives that are ubiquitous in engineering modeling, in other ways the use of them requires quite a bit of mathematical expertise and familiarity with some mathematical concepts that are not in everyday use across the broad spectrum of engineering disciplines. In more colloquial terms, the learning curve is steep. While the authors recognize the need for fundamental competence in tools used in engineering, a computational tool that can provide an alternative means to compute fractional derivatives does have a useful role in engineering modeling. This paper presents the use of a symmetric neural network that is trained entirely on integer-order derivatives to provide a means to compute fractional derivatives. The training data does not contain any fractional-order derivatives at all, and is composed of only integer-order derivatives. The means by which a fractional derivative can be obtained is by requiring the neural network to be symmetric, that is, it is the composition of two identical sets of layers trained on integer-order derivatives. From that, the information contained in the nodes between the two sets of layers contains half-order derivative information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.