Abstract

Young et al., (2010) showed that due to gene length bias the popular Fisher Exact Test should not be used to study the association between a group of differentially expressed (DE) genes and a specific Gene Ontology (GO) category. Instead they suggest a test where one conditions on the genes in the GO category and draws the pseudo DE expressed genes according to a length-dependent distribution. The same model was presented in a different context by Kazemian et al., (2011) who went on to offer a dynamic programming (DP) algorithm to exactly compute the significance of the proposed test. Here we point out that while valid, the test proposed by these authors is no longer symmetric as Fisher's Exact Test is: one gets different answers if one conditions on the observed GO category than on the DE set. As an alternative we offer a symmetric generalization of Fisher's Exact Test and provide efficient algorithms to evaluate its significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.