Abstract

Many works confirm the anti-correlations between the default mode network (DMN) and the central-executive network (CEN) in the brain. However, the switching mechanism of the DMN itself is still lack of understanding from the viewpoint of neural network dynamics. Here we simulate the DMN with the Hindmarsh-Rose (HR) neuron model on the small-world network. We model the state of oscillator death and oscillatory firing as the inhibitory state and the activated state, respectively. We find that the DMN can regenerate from the inhibitory state when the input current of only one synapse is cut off at criticality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.