Abstract
Apoptosis is a form of programmed cell death that is essential for maintaining internal environmental stability. Disordered apoptosis can cause a variety of diseases; therefore, sensing apoptosis can provide help in study of mechanism of the relevant diseases and drug development. It is known that caspase-3 is a key enzyme involved in apoptosis and the expression of its activity is an indication of apoptosis. Here, we present a genetically encoded switch-on mNeonGreen2-based molecular biosensor. mNeonGreen2 is the brightest monomeric green fluorescent protein. The substrate of caspase-3, DEVD amino acid residues, is inserted in it, while cyclized by insertion of Nostoc punctiforme DnaE intein to abolish the fluorescence (inactive state). Caspase-3-catalyzed cleavage of DEVD linearizes mNeonGreen2 and rebuilds the natural barrel structure to restore the fluorescence (activated state). The characterization exhibited that the Caspase-3 biosensor has shortened response time, higher sensitivity, and prolonged functional shelf life in detection of caspase-3 amongst the existing counterparts. We also used the Caspase-3 biosensor to evaluate the effect of several drugs on the induction of apoptosis of HeLa and MCF-7 tumor cells and inhibition of Zika virus invasion.Supporting InformationThe supporting information is available online at 10.1007/s11427-021-1986-7. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have