Abstract

A recommender system in an e-learning context is a software agent that tries to ”intelligently” recommend actions to a learner based on the actions of previous learners. This recommendation could be an on-line activity such as doing an exercise, reading posted messages on a conferencing system, or running an on-line simulation, or could be simply a web resource. These recommendation systems have been tried in ecommerce to entice purchasing of goods, but haven’t been tried in e-learning. This paper suggests the use of web mining techniques to build such an agent that could recommend online learning activities or shortcuts in a course web site based on learners’ access history to improve course material navigation as well as assist the online learning process. These techniques are considered integrated web mining as opposed to off-line web mining used by expert users to discover online access patterns

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.