Abstract

Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.

Highlights

  • Deep Learning models have made incredible progress in discriminative tasks

  • The development of Neural Style Transfer, adversarial training, generative adversarial network (GAN), and meta-learning APIs will help engineers utilize the performance power of advanced Data Augmentation techniques much faster and more. This survey presents a series of Data Augmentation solutions to the problem of overfitting in Deep Learning models due to limited data

  • Deep Learning models rely on big data to avoid overfitting

Read more

Summary

Introduction

Deep Learning models have made incredible progress in discriminative tasks. This has been fueled by the advancement of deep network architectures, powerful computation, and access to big data. Deep neural networks have been successfully applied to Computer Vision tasks such as image classification, object detection, and image segmentation thanks to the development of convolutional neural networks (CNNs). These neural networks utilize parameterized, sparsely connected kernels which preserve the spatial characteristics of images. Convolutional layers sequentially downsample the spatial resolution of images while expanding the depth of their feature maps. Image augmentation in the form of data warping can be found in LeNet-5 [28] This was one of the first applications of CNNs on handwritten digit classification. The primary focus of this technique was to alleviate problems due to class imbalance, and SMOTE was primarily used for tabular and vector data

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call