Abstract
Multiobjective evolutionary algorithms based on decomposition (MOEA/D) have attracted tremendous attention and achieved great success in the fields of optimization and decision-making. MOEA/Ds work by decomposing the target multiobjective optimization problem (MOP) into multiple single-objective subproblems based on a set of weight vectors. The subproblems are solved cooperatively in an evolutionary algorithm framework. Since weight vectors define the search directions and, to a certain extent, the distribution of the final solution set, the configuration of weight vectors is pivotal to the success of MOEA/Ds. The most straightforward method is to use predefined and uniformly distributed weight vectors. However, it usually leads to the deteriorated performance of MOEA/Ds on solving MOPs with irregular Pareto fronts. To deal with this issue, many weight vector adjustment methods have been proposed by periodically adjusting the weight vectors in a random, predefined, or adaptive way. This article focuses on weight vector adjustment on a simplex and presents a comprehensive survey of these weight vector adjustment methods covering the weight vector adaptation strategies, theoretical analyses, benchmark test problems, and applications. The current limitations, new challenges, and future directions of weight vector adjustment are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.