Abstract
In recent years, more people have been using the internet and social media to express their opinions on various subjects, such as institutions, services, or specific ideas. This increase highlights the importance of developing automated tools for accurate sentiment analysis. Moreover, addressing sarcasm in text is crucial, as it can significantly impact the efficacy of sentiment analysis models. This paper aims to provide a comprehensive overview of the conducted research on sentiment analysis and sarcasm detection, focusing on the time from 2018 to 2023. It explores the challenges faced and the methods used to address them. It conducts a comparison of these methods. It also aims to identify emerging trends that will likely influence the future of sentiment analysis and sarcasm detection, ensuring their continued effectiveness. This paper enhances the existing knowledge by offering a comprehensive analysis of 40 research works, evaluating performance, addressing multilingual challenges, and highlighting future trends in sarcasm detection and sentiment analysis. It is a valuable resource for researchers and experts interested in the field, facilitating further advancements in sentiment analysis techniques and applications. It categorizes sentiment analysis methods into ML, lexical, and hybrid approaches, highlighting deep learning, especially Recurrent Neural Networks (RNNs), for effective textual classification with labeled or unlabeled data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of electrical and computer engineering systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.