Abstract

Consider a population of customers, each of which needs to decide independently when to arrive to a facility that provides a service during a fixed period of time, say a day. This is a common scenario in many service systems such as a bank, lunch at a cafeteria, music concert, flight check-in and many others. High demand for service at a specific time leads to congestion that comes at a cost, for examlple, for waiting, earliness or tardiness. Queueing theory provides tools for the analysis of the waiting times and associated costs. If customers have the option of deciding when to join the queue, they will face a decision dilemma of when to arrive. The level of congestion one suffers from depends on others, behavior and not only that of the individual under consideration. This fact leads customers to make strategic decisions regarding their time of arrival. In addition, multiple decision makers that affect each other’s expected congestion call for noncooperative game-theoretical analysis of this strategic interaction. This common daily scenario has prompted a research stream pioneered by the ?/M/1 model of Glazer and Hassin (Eur J Oper Res 13(2):146–150, 1983) that first characterized an arrival process to a queue as a Nash equilibrium solution of a game. This survey provides an overview of the main results and developments in the literature on queueing systems with strategic timing of arrivals. Another issue is that of social optimality, namely the strategy profile used by customers that optimizes their aggregate utility. In particular, we review results concerning the price of anarchy (PoA), which is the ratio between the socially optimal and the equilibrium utilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.