Abstract
We present a survey of 97 spectra of mainly sporadic meteors in the magnitude range +3 to −1, corresponding to meteoroid sizes 1–10 mm. For the majority of the meteors, heliocentric orbits are known as well. We classified the spectra according to relative intensities of the lines of Mg, Na, and Fe. Theoretical intensities of these lines for a chondritic composition of the meteoroid and a wide range of excitation and ionization conditions were computed. We found that only a minority of the meteoroids show chondritic composition. Three distinct populations of Na-free meteoroids, each comprising ∼10% of sporadic meteoroids in the studied size range, were identified. The first population are meteoroids on asteroidal orbits containing only Fe lines in their spectra and possibly related to iron–nickel meteorites. The second population are meteoroids on orbits with small perihelia ( q ⩽ 0.2 AU ), where Na was lost by thermal desorption. The third population of Na-free meteoroids resides on Halley type cometary orbits. This material was possibly formed by irradiation of cometary surfaces by cosmic rays in the Oort cloud. The composition of meteoroids on Halley type orbits is diverse, probably reflecting internal inhomogeneity of comets. On average, cometary dust has lower than chondritic Fe/Mg ratio. Surprisingly, iron meteoroids prevail among millimeter-sized meteoroids on typical Apollo-asteroid orbits. We have also found varying content of Na in the members of the Geminid meteoroid stream, suggesting that Geminid meteoroids were not released from their parent body at the same time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have