Abstract
Dynamic power management (DPM) is a design methodology for dynamically reconfiguring systems to provide the requested services and performance levels with a minimum number of active components or a minimum load on such components. DPM encompasses a set of techniques that achieves energy-efficient computation by selectively turning off (or reducing the performance of) system components when they are idle (or partially unexploited). In this paper, we survey several approaches to system-level dynamic power management. We first describe how systems employ power-manageable components and how the use of dynamic reconfiguration can impact the overall power consumption. We then analyze DPM implementation issues in electronic systems, and we survey recent initiatives in standardizing the hardware/software interface to enable software-controlled power management of hardware components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.