Abstract

The recent developments of deep learning support the identification and classification of lung diseases in medical images. Hence, numerous work on the detection of lung disease using deep learning can be found in the literature. This paper presents a survey of deep learning for lung disease detection in medical images. There has only been one survey paper published in the last five years regarding deep learning directed at lung diseases detection. However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease detection systems, visualise the trends of recent work on the domain and identify the remaining issues and potential future directions in this domain. Ninety-eight articles published from 2016 to 2020 were considered in this survey. The taxonomy consists of seven attributes that are common in the surveyed articles: image types, features, data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy could be used by other researchers to plan their research contributions and activities. The potential future direction suggested could further improve the efficiency and increase the number of deep learning aided lung disease detection applications.

Highlights

  • Lung diseases, known as respiratory diseases, are diseases of the airways and the other structures of the lungs [1]

  • According to Forum of International Respiratory Societies [2], about 334 million people suffer from asthma, and, each year, tuberculosis kills 1.4 million people, 1.6 million people die from lung cancer, while pneumonia kills millions of people

  • Lung disease can be detected via skin test, blood test, sputum sample test [7], chest X-ray examination and computed tomography (CT) scan examination [8]

Read more

Summary

Introduction

Known as respiratory diseases, are diseases of the airways and the other structures of the lungs [1]. Examples of lung disease are pneumonia, tuberculosis and Coronavirus. According to Forum of International Respiratory Societies [2], about 334 million people suffer from asthma, and, each year, tuberculosis kills 1.4 million people, 1.6 million people die from lung cancer, while pneumonia kills millions of people. The COVID-19 pandemic impacted the whole world [3], infecting millions of people and burdening healthcare systems [4]. It is clear that lung diseases are one of the leading causes of death and disability in this world. Lung disease can be detected via skin test, blood test, sputum sample test [7], chest X-ray examination and computed tomography (CT) scan examination [8]. Deep learning has shown great potential when applied on medical images for disease detection, including lung disease

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.