Abstract

A simple noncovalent method is used to graft sulfonate (–SO3H) groups on a graphene oxide (GO) surface by the π–π stacking interaction between 1-propylsulfonic-3-methylimidazolium chloride and GO. The immobilization of sulfonate groups on the GO surface is confirmed by various physical techniques, such as X-ray photoelectron spectroscopy, ultraviolet and visible spectroscopy, and zeta potential analysis, etc. The as-prepared sulfonate functionalized GO composites (GO-SO3H) are further used as supporting material to anchor PdO·H2O nanoparticles through the slow hydrolysis of PdCl2. The sulfonate functionalized reduced GO composites (rGO-SO3H) supported Pd nanoparticles composites (Pd/rGO-SO3H) are obtained through the simultaneous reduction of PdO·H2O and the GO-SO3H with sodium borohydride. As shown by transmission electron microscopy, Pd nanoparticles with good dispersity effectively anchor on the rGO-SO3H surface. The as-prepared Pd/rGO-SO3H composites display the improved electrocatalytic activity and long-term stability towards the formic acid oxidation reaction compared to the un-sulfonated counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call