Abstract

A novel three-dimensional (3D) metal-nanocavity (or nano-coin) semiconductor laser suitable for electrical injection is proposed and analyzed. Our design uses metals as both the cavity sidewall and the top/bottom reflectors (i. e., a fully metal encapsulated nanolaser) and maintains the surface-emitting nature. As a result of the large permittivity contrast between the dielectric and metal, the optical energy can be well-confined inside the metal nanocavity. With a proper design and the choice of the HE111 mode, which has the best top surface radiation pattern, a laser with a physical size smaller than 0.01λ(0)(3) is achievable at 1.55 μm wavelength with a reasonable semiconductor gain at room temperature. We provide a detailed theoretical model starting from the waveguide analysis to full 3D structure simulations by taking into account both geometry and metal dispersion. We show a systematic procedure for analyzing this class of 3D metal-cavity (or nano-coin) lasers with discussions on the optimization of the performance such as light output power, threshold reduction, and output beam shaping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.