Abstract

SummaryMicrobial pathogens use environmental cues to trigger the developmental events needed to infect mammalian hosts or transmit to disease-vectors. The parasites causing African sleeping sickness respond to citrate/cis aconitate (CCA) to initiate life-cycle development when transmitted to their tsetse-fly vector. This requires hypersensitization of the parasites to CCA by exposure to low temperature, conditions encountered after tsetse feeding at dusk or dawn. Here we identify a carboxylate-transporter family, PAD (Proteins Associated with Differentiation) required for perception of this differentiation signal. Consistent with predictions for the response of trypanosomes to CCA, PAD proteins are expressed on the surface of the transmission-competent ‘stumpy-form’ parasites in the bloodstream and at least one member is thermoregulated, showing elevated expression and surface-access at low-temperature. Moreover, RNAi-mediated ablation of PAD expression diminishes CCA-induced differentiation and eliminates CCA-hypersensitivity under cold-shock conditions. As well as being molecular transducers of the differentiation signal in these parasites, PAD proteins provide the first surface-marker able to discriminate the transmission-stage of trypanosomes in their mammalian host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.