Abstract

The oxidation of type 304L stainless steel at 600 K in air was studied using a number of surface-analytical techniques, including Auger electron spectroscopy (AES), scanning electron microscopy with energy-dispersive analysis of X-rays (SEM-EDAX), secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS). Spectral analysis showed that a duplex oxide was formed, the outer layer of which formed rapidly and was essentially iron (III) oxide. Beneath this was a mixed iron-chromium oxide. SIMS sputter-profile curves showed region of relatively low iron concentration in the oxide film at the metal-oxide interface. This resulted from the rapid diffusion of iron within the oxide film. The oxide grain boundaries were examined using SEMEDAX. Higher chromium and silicon levels were detected in these regions compared with the corresponding grain centers. AES indicated the presence of silicon as SiO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.