Abstract
The paper presents a surface-based approach for geometric feature recognition for the purpose of automating the process planning of freeform surface machining. The proposed approach consists of the following four steps for recognition of the geometric features: conversion and preprocessing of the surface geometry data, subdivision of NURBS surface, reconstruction of surface orientation areas, and recognition of geometric features. The proposed scheme assumes that the input geometry data form is based on an IGES CAD model and the surface model can be represented in the form of trimmed NURBS surfaces. The connectivity relations of the product surfaces are analyzed and each surface is subdivided into orientation regions based on the surface normal vector over a certain point density grid, and then all the connected regions with the same orientation type are grouped into surface orientation areas. After that, the geometric feature will be recognized through the analysis of area connectivity and relationship. The paper describes the developed algorithms on surface orientation region subdivision, surface orientation area reconstruction, and geometric feature recognition. The verified feasibility study of the developed method is also presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have