Abstract
Properties of paraoxon, such as poor water solubility, low rate of natural decomposition, ability to accumulate in soil and wastewater, lead to the fact that paraoxon is found in various agricultural products and textiles. In this regard, the search for effective ways of paraoxon degradation becomes an extremely urgent problem, which can be solved by creating catalysts by mimicking paraxonase. In this work, a complex of physicochemical methods was used to study the supramolecular interactions of sodium alginate, which has a calcium-binding ability similar to paraxonase, with viologen calix[4]resorcinol and to reveal the nature of the intermolecular interactions between them resulting in the spontaneous formation of nanoparticles. Before proceeding to the investigation of the binding ability of obtained nanoparticles to paraoxon, the encapsulating effect of nanoparticles on a number of model substrates of different solubility (doxorubicin hydrochloride, quercetin and oleic acid) was studied. The kinetics of paraoxon hydrolysis reaction using these nanoparticles was studied at room temperature in an aqueous medium by spectrophotometric method. The rate of this reaction increases with increasing concentration of stable nanoparticles having hydrophobic domains that ensure paraoxon immobilization. The results obtained allow considering the supramolecular polysaccharide/calixarene system as an effective biomimetic catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.