Abstract

AbstractSupramolecular materials, in which small organic molecules are assembled into regular structures by non‐covalent interactions, attract tremendous interests because of their highly tunable functional groups and porous structure. Supramolecular adsorbents are expected to fully expose their abundant adsorptive sites in a dynamic framework. In this contribution, we introduced cucurbit[6]uril as a supramolecular capsule for reversible storage/delivery of mobile polysulfides in lithium‐sulfur (Li‐S) batteries to control undesirable polysulfide shuttle. The Li‐S battery equipped with the supramolecular capsules retains a high Coulombic efficiency and shows a large increase in capacity from 300 to 900 mAh g−1 at a sulfur loading of 4.2 mg cm−2. The implementation of supramolecular capsules offers insights into intricate multi‐electron‐conversion reactions and manifests as an effective and efficient strategy to enhance Li‐S batteries and analogous applications that involve complex transport phenomena and intermediate manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call