Abstract

Supramolecular materials, in which small organic molecules are assembled into regular structures by non-covalent interactions, attract tremendous interests because of their highly tunable functional groups and porous structure. Supramolecular adsorbents are expected to fully expose their abundant adsorptive sites in a dynamic framework. In this contribution, we introduced cucurbit[6]uril as a supramolecular capsule for reversible storage/delivery of mobile polysulfides in lithium-sulfur (Li-S) batteries to control undesirable polysulfide shuttle. The Li-S battery equipped with the supramolecular capsules retains a high Coulombic efficiency and shows a large increase in capacity from 300 to 900 mAh g-1 at a sulfur loading of 4.2 mg cm-2 . The implementation of supramolecular capsules offers insights into intricate multi-electron-conversion reactions and manifests as an effective and efficient strategy to enhance Li-S batteries and analogous applications that involve complex transport phenomena and intermediate manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.