Abstract
Despite the significant breakthrough of neural networks in the last few years, their spreading in the field of computational fluid dynamics is very recent, and many applications remain to explore. In this paper, we explore the drag prediction capabilities of convolutional neural networks for laminar, low-Reynolds number flows past arbitrary 2D shapes. A set of random shapes exhibiting a rich variety of geometrical features is built using Bézier curves. The efficient labelling of the shapes is provided using an immersed method to solve a unified Eulerian formulation of the Navier-Stokes equation. The network is then trained and optimized on the obtained dataset, and its predictive efficiency assessed on several real-life shapes, including NACA airfoils.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have