Abstract
We derive a sufficient condition for a kth order homogeneous Markov chain Z with finite alphabet Z to have a unique invariant distribution on Zk. Specifically, let X be a first-order, stationary Markov chain with finite alphabet X and a single recurrent class, let g:X→Z be non-injective, and define the (possibly non-Markovian) process Y:=g(X) (where g is applied coordinate-wise). If Z is the kth order Markov approximation of Y, its invariant distribution is unique. We generalize this to non-Markovian processes X.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.