Abstract

Optimal power-gas flow (OPGF) problem is a fundamental coordinated operation problem. However, the nonlinear AC power flow model and nonconvex gas flow model pose a huge challenge to OPGF calculation. The common treatments in the existing literature adopt simplified modeling of power and gas systems to obtain a relatively tractable model, which may produce an inaccurate and insecure solution (e.g., violation of voltage limits). Therefore, this paper considers the nonlinear AC power flow modeling and nonconvex gas flow modeling in the OPGF problem. To address the nonconvexities arising from the nonlinear AC power flow model, nonconvex Weymouth equations, and compressors’ gas consumption equations, the concept of successive linearization is introduced and then a successive mixed-integer quadratic programming (SMIQP) method is developed to solve the nonconvex OPGF problem. Numerical results demonstrate the effectiveness of the proposed SMIQP-based OPGF method in terms of high accuracy and high computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.