Abstract

The small charged droplet generated from the nanoelectrospray ionization (nanoESI) source at nL/min flow rate gives its unique feature of high-performance ionization. A continuous scan of the flow rate in this regime can trace the effect of droplet size in greater detail for a better understanding of the ionization process. To date, such practical implementation is hindered by the lack of a suitable liquid pump and the reproducibility of microcapillaries-based systems. Here, offline nanoESI mass spectrometry with a continuously varying flow rate in a dynamic range of several hundred pL/min to ∼100 nL/min was performed by the precision scanning of ESI high voltage (HV). The principle is based on the new paradigm of generating nanoelectrospray from a large Taylor cone with a known spray current-flow rate relationship. The instantaneous flow rate controlled by the HV was determined by simultaneous measurement of the spray current. The system is successfully applied to reveal the role of nanoflow rate on the average charge state of proteins, analysis of analyte mixture, and desalting effect. With the use of a buffer solution with high electric conductivity, a highly controllable oxidative modification was also observed by tuning the flow rate below a threshold of ∼5 nL/min, a finding that has potential application to on-demand oxygen labeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call