Abstract
A new form of discharge excited by a microwave beam in a high-pressure (up to atmospheric and higher) gas in free space and in a closed chamber is discussed. For the first time, the discharge was implemented by means of a gyrotron with a pulse power of 200 ≤ P ≤ 600 kW, a pulse duration of 0.5 ≤ τ ≤ 20 ms, and a wavelength of λ = 0.4 cm. Under deeply subthreshold conditions in atmospheric-pressure air, a plasma column with a length of L = 50 cm was generated by a microwave beam formed with the help of a quasi-optical transmission line. With the use of the MIG-3 gyrotron complex with the above parameters, generation of a plasma column with a length of several meters is possible in principle. The parameters and structure of the formation of the plasma investigated make it possible to class it as a self-non-self-sustained (SNSS) discharge, discovered and described for the first time at the Prokhorov General Physics Institute, Russian Academy of Sciences. One of the important applications of this type of discharge is plasmachemical cleaning of the urban air environment of hazardous contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.