Abstract
AbstractA domain decomposition method with Lagrange multipliers for the Stokes problem is developed and analysed. A common approach to solve the Stokes problem, termed the Uzawa algorithm, is to decouple the velocity and the pressure. This approach yields the Schur complement system for the pressure Lagrange multiplier which is solved with an iterative solver. Each outer iteration of the Uzawa procedure involves the inversion of a Laplacian in each spatial direction. The objective of this paper is to effectively solve this inner system (the vector Laplacian system) by applying the finite‐element tearing and interconnecting (FETI) method. Previously calculated search directions for the FETI solver are reused in subsequent outer Uzawa iterations. The advantage of the approach proposed in this paper is that pressure is continuous across the entire computational domain. Numerical tests are performed by solving the driven cavity problem. An analysis of the number of outer Uzawa iterations and inner FETI iterations is reported. Results show that the total number of inner iterations is almost numerically scalable since it grows asymptotically with the mesh size and the number of subdomains. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.