Abstract

Hyperspectral image classification faces various levels of difficulty due to the use of different types of hyperspectral image data. Recently, spectral–spatial approaches have been developed by jointly taking care of spectral and spatial information. This paper presents a completely different approach from a subpixel target detection view point. It implements four stage processes, a preprocessing stage, which uses band selection (BS) and nonlinear band expansion, referred to as BS-then-nonlinear expansion (BSNE), a detection stage, which implements constrained energy minimization (CEM) to produce subpixel target maps, and an iterative stage, which develops an iterative CEM (ICEM) by applying Gaussian filters to capture spatial information, and then feeding the Gaussian-filtered CEM-detection maps back to BSNE band images to reprocess CEM in an iterative manner. Finally, in the last stage Otsu’s method is applied to converting ICEM-detected real-valued maps to discrete values for classification. The entire process is called BSNE-ICEM. Experimental results demonstrate BSNE-ICEM, which has advantages over support vector machine-based approaches in many aspects, such as easy implementation, fewer parameters to be used, and better false classification and precision rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.