Abstract

The design and characteristics of a Nb based Josephson 16-bit arithmetic logic unit (ALU) for use as a major component of a practical Josephson microprocessor are discussed. The ALU has 900 gates and uses dual-rail logic to perform 12 functions. One of the simplest algorithms, the ripple-carry method, is used. Experiments confirmed that ALU functions operated correctly. The critical path delay time was 860 ps for a 10.1-mW power dissipation. Average values estimated from experiments are 9.2 ps for the gate delay and 113 mu W for the gate power dissipation. The results demonstrate that development of a Josephson microprocessor is feasible.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call