Abstract
The selectively implanted buried subcollector (SIBS) is a method to decouple the intrinsic and extrinsic C/sub BC/ of InP-based double-heterojunction bipolar transistors (DHBTs). Similar to the selectively implanted collector (SIC) used in Si-based bipolar junction transistors (BJTs) and HBTs, ion implantation is used to create a N+ region in the collector directly under the emitter. By moving the subcollector boundary closer to the BC junction, SIBS allows the intrinsic collector to be thin, reducing /spl tau//sub C/, while simultaneously allowing the extrinsic collector to be thick, reducing C/sub BC/. For a 0.35 × 6 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> emitter InP-based DHBT with a SIBS, 6 fF total C/sub BC/ and >6 V BV/sub CBO/ were obtained with a 110-nm intrinsic collector thickness. A maximum f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> of 252 GHz and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> of 283 GHz were obtained at a V/sub CE/ of 1.6 V and I/sub C/ of 7.52 mA. Despite ion implantation and materials regrowth during device fabrication, a base and collector current ideality factor of /spl sim/2.0 and /spl sim/1.4, respectively, at an I/sub C/ of 100 μA, and a peak dc /spl beta/ of 36 were measured.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have