Abstract
A novel concept of combining the advantages of pseudospark (PS)-sourced electron beam (high beam current density), multiple-sheet-electron-beams (large total beam cross-sectional area), and high-order mode (HOM) slow wave structure (SWS) (high power capacity) to produce high-power terahertz signals is presented in this article. As an example, a sub-terahertz backward wave oscillator (BEO) driven by PS-sourced dual-sheet-electron-beams is designed. Measured results of the interaction circuit, including transmission/reflection coefficients and the dispersion relation, were in good agreement with simulation predictions. Beam-wave interaction simulations having considered the plasma effect and conductor loss predicted stable output signals with radiation power of 167.4–255.4 W over a tunable bandwidth of 234.4–241.0 GHz.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have