Abstract

A digital-to-phase converter (DPC) is an essential building block in applications such as source-synchronous interfaces and digital phase modulators. The resolution of DPCs using analog phase interpolators is severely affected by the operating frequency and rise times of the interpolator inputs. In this paper, we present a new DPC architecture that achieves high resolution independent of both the operating frequency and the rise time. The 8 phases generated by a phase-locked loop are dithered using a delta-sigma modulator to shape the truncation error to high frequency and is subsequently filtered using a delay-locked loop phase filter. The test chip, fabricated in a 0.13 mum CMOS process, operates from 0.5 -1.5 GHz and achieves a differential nonlinearity of less than plusmn0.1 ps and an integral nonlinearity of plusmn12 ps. The total power consumption while operating at 1 GHz is 15 mW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.