Abstract

A molecular beam spectrometer capable of achieving sub-Doppler resolution at 2 eV (∼18 000 cm−1) of vibrational excitation is described and its performance demonstrated using the CH stretch chromophore of HCN. Two high finesse resonant power-buildup cavities are used to excite the molecules using a sequential double resonance technique. A v=0→2 transition is first saturated using a 1.5 μm color center laser, whereupon a fraction of the molecules is further excited to the v=6 level using an amplitude modulated Ti:Al2O3 laser. The energy absorbed by the molecules is detected downstream of both excitation points by a cryogenically cooled bolometer using phase sensitive detection. A resolution of approximately 15 MHz (i.e., three parts in 108) is demonstrated by recording a rotational line in the v=6 manifold of HCN. Scan speeds of up to several cm−1/h were obtained, with signal-to-noise ratios in excess of 100. The high signal-to-noise ratio and a dynamic range of 6×104 means that future experiments to study statistical intramolecular vibrational energy redistribution in small molecules and unimolecular isomerizations can be attempted. We would also like to point out that, with improved metrology in laser wavelengths, this instrument can also be used to provide improved secondary frequency standards based upon the rovibrational spectra of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.