Abstract
The modification of proteins by bioactive molecules may have a synergistic enhancement effect on their respective functional properties. In this study, carvacrol (Car) was used to modify egg white lysozyme (LYZ) to improve its bacteriostatic ability. The results of microbiological experiments suggested that LYZ modified with Car had enhanced bacteriostatic activity against Escherichia coli (E. coli). The results of Ultraviolet–Visible (UV–VIS) absorption spectra expressed that Car and LYZ form a complex. Molecular docking of 100 compounds found that Car mostly acts in the hydrophobic cavity of LYZ. Molecular docking data confirmed the dominant role of van der Waals forces in the energy contribution of the LYZ-Car system, and molecular dynamics simulations showed that Car is relatively stable in the hydrophobic pocket of LYZ. Various types of spectral show that Car influences the tertiary and secondary structures of LYZ. Isothermal Titration Calorimetry (ITC) experiments found that the binding constant between Car and LYZ is 1.53 × 10−6 M. Differential Scanning Calorimetry (DSC) experiments demonstrate that this Car reduces the thermal stability of LYZ. The research findings contribute to the development and utilization of LYZ.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have