Abstract

In this study, we investigate the homogeneous nucleation kinetics of copper and nickel system during cooling process using molecular dynamics simulation (MDS). The calculation is carried out for a different number of atoms consisting of 500, 2048, 8788 and 13,500 based on embedded atom method (EAM). It is observed that the melting points for the both model increases with increasing the size of systems (i.e. the number of atoms) as expected from Parrinello and Rahman MD method. The interfacial free energies and critical nucleus radius of nickel and copper are also determined by molecular dynamics, and the results are consistent with the classical nucleation theory. The structural development and phase transformation are also determined from the radial distribution function (RDF) and local bond orientational order parameters (LBOO).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.