Abstract

A common approach for generating an anisotropic mesh is the M-uniform mesh approach where an adaptive mesh is generated as a uniform one in the metric specified by a given tensor M. A key component is the determination of an appropriate metric, which is often based on some type of Hessian recovery. Recently, the use of a global hierarchical basis error estimator was proposed for the development of an anisotropic metric tensor for the adaptive finite element solution. This study discusses the use of this method for a selection of different applications. Numerical results show that the method performs well and is comparable with existing metric tensors based on Hessian recovery. Also, it can provide even better adaptation to the solution if applied to problems with gradient jumps and steep boundary layers. For the Poisson problem in a domain with a corner singularity, the new method provides meshes that are fully comparable to the theoretically optimal meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.