Abstract
Multi-cluster fracturing has emerged as an effective technique for enhancing the productivity of deep shale reservoirs. The presence of natural bedding planes in these reservoirs plays a significant role in shaping the evolution and development of multi-cluster hydraulic fractures. Therefore, conducting detailed research on the propagation mechanisms of multi-cluster hydraulic fractures in deep shale formations is crucial for optimizing reservoir transformation efficiency and achieving effective development outcomes. This study employs the finite discrete element method (FDEM) to construct a comprehensive three-dimensional simulation model of multi-cluster fracturing, considering the number of natural fractures present and the geo-mechanical characteristics of a target block. The propagation of hydraulic fractures is investigated in response to the number of natural fractures and the design of the multi-cluster fracturing operations. The simulation results show that, consistent with previous research on fracturing in shale oil and gas reservoirs, an increase in the number of fracturing clusters and natural fractures leads to a larger total area covered by artificial fractures and the development of more intricate fracture patterns. Furthermore, the present study highlights that an escalation in the number of fracturing clusters results in a notable reduction in the balanced expansion of the double wings of the main fracture within the reservoir. Instead, the effects of natural fractures, geo-stress, and other factors contribute to enhanced phenomena such as single-wing expansion, bifurcation, and the bending of different main fractures, facilitating the creation of complex artificial fracture networks. It is important to note that the presence of natural fractures can also significantly alter the failure mode of artificial fractures, potentially resulting in the formation of small opening shear fractures that necessitate careful evaluation of the overall renovation impact. Moreover, this study demonstrates that even in comparison to single-cluster fracturing, the presence of 40 natural main fractures in the region can lead to the development of multiple branching main fractures. This finding underscores the importance of considering natural fractures in deep reservoir fracturing operations. In conclusion, the findings of this study offer valuable insights for optimizing deep reservoir fracturing processes in scenarios where natural fractures play a vital role in shaping fracture development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.