Abstract
The climatological characteristics of water vapor transport over the Tibetan Plateau (TP) were investigated in this study by using the ERA-interim and JRA55 monthly reanalysis dataset. The trends of water vapor budget and water vapor sources during the past 40 years were also revealed. The analyses show that the TP is a water vapor convergence area, where the convergence was enhanced from 1979 to 2018. In addition, the convergence is much stronger in JJA, with a linear trend that is twice the annual average trend. The climatological water vapor sources over the TP were identified mainly at the southern and western boundaries, with the vapor sources at the southern boundaries originating from the Arabian Sea and Bay of Bengal and the vapor sources at the western boundary being transported by mid-latitude westerlies. The TP is a moisture sink at a climatological mean, with an annual average net water vapor flux of 11.86 × 106kg ∙ s−1. Water vapor transport is much stronger in JJA than in other times of the year, and the net water vapor flux is 29.60 × 106kg ∙ s−1. The net water vapor flux in the TP increased with a linear trend of 0.12×106kg ∙ s−1 ∙ year−1 (α = 0.01), while the increase in the flux was more significant in JJA than in other times of the year with a linear trend of 0.30 ×106kg ∙ s−1 ∙ year−1 (α = 0.01). Detailed features in the water vapor flux and transport changes across the TP’s four boundaries were explored by simulating backward trajectories with a Lagrangian trajectory model (hybrid single-particle Lagrangian integrated trajectory model, HYSPLIT). In the study period, the water vapor contribution rate of western channel is increased. However, the Southern channel’s water vapor contribution decreased.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have