Abstract
The study aims to optimize the vehicle routing problem, considering infeasible routing, to minimize losses for the company. Firstly, a vehicle routing model with hard time windows and infeasible route constraints is established, considering both the minimization of total vehicle travel distance and the maximization of customer satisfaction. Subsequently, a Floyd-based improved genetic algorithm that incorporates local search is designed. Finally, the computational experiment demonstrates that compared with the classic genetic algorithm, the improved genetic algorithm reduced the average travel distance by 20.6% when focusing on travel distance and 18.4% when prioritizing customer satisfaction. In both scenarios, there was also a reduction of one in the average number of vehicles used. The proposed method effectively addresses the model introduced in this study, resulting in a reduction in total distance and an enhancement of customer satisfaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Technology Innovation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.