Abstract
The formation of the nanostructured WC–10 wt% Co powder from WO3, Co3O4, and graphite is studied. The effects of the processing parameters of high-energy ball milling, reduction in H2 atmosphere, and carburization in Ar/CO atmosphere are investigated. The crystallite size of the as-synthesized WC is 30–40 and 40–50 nm for 900 and 1000 °C carburized powders, respectively. The powder is agglomerated with the size of the primary particles ranging from 50 to 700 nm. High-energy ball milling of WO3–Co3O4–C powder mixtures leads to finer particle and crystallite sizes with larger surface area. Such milled powders can be reduced to nanostructured W at 570 °C and carburized to form WC at temperatures as low as 900 °C. Crystal growth has taken place during carburization, particularly at 1000 °C, which results in the formation of truncated triangular prisms and nanoplates of WC at 1000 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.