Abstract

GaN is a favorable martial for future efficient high voltage power switches. GaN has not dominated the power electronics market due to immature substrate, homoepitaxial growth, and immature processing technology. Understanding the impact of the substrate and homoepitaxial growth on the device performance is crucial for boosting the performance of GaN. In this work, we studied vertical GaN PiN diodes that were fabricated on non-homogenous Hydride Vapor Phase Epitaxy (HVPE) substrates from two different vendors. We show that defects which stemmed from growth techniques manifest themselves as leakage hubs. Different non-homogenous substrates showed different distribution of those defects spatially with the lesser quality substrates clustering those defects in clusters that causes pre-mature breakdown. Energetically these defects are mostly mid-gap around 1.8Ev with light emission spans from 450nm to 700nm. Photon emission spectrometry and hyperspectral electroluminescence were used to locate these defects spatially and energetically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call