Abstract
The effects of the ice microphysical processes on the development of weak vortices and tropical cyclones (TCs) are examined by numerical experiments with a nonhydrostatic model. Since it has been understood that the ice phase generally enhances the eyewall circulation in strong TCs because of additional heat release and insignificant effect of rainwater evaporation, this study focuses on the development of relatively weak vortices and TCs. Some past studies showed that the development is slower by the effects of the ice phase through cooling due to the melting of snow and graupel, whereas this study indicates that cooling due to evaporation of rainwater in the subcloud layer plays a much more important role in the slower development, and much more solid substances in the mid-troposphere, which are produced through the ice phase processes, contribute to more rainwater evaporation in the subcloud layer. The relative importance of many processes of the ice microphysics is also examined as a basis for future improvements of parameterization of the microphysical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.