Abstract

A crack-free surface can be finished on brittle materials by a specialized but traditional machining technique known as ductile-mode machining. In ductile-mode machining of brittle material, crack propagation is suppressed by selecting a suitable combination of tool and machining parameters leading to the removal of material through plastic deformation enabled by dislocation motion. In ductile-mode machining, the tool–workpiece interaction is of critical significance for the capability of the cutting process to finish a crack-free surface on a brittle material. This interaction is largely dictated by the cutting-edge radius of the tool when the undeformed chip thickness is comparable to the edge radius as is the case of ductile-mode machining. This paper presents the experimental results of ductile-mode milling of tungsten carbide to investigate the effect of cutting-edge radius on certain critical machining characteristics associated with the ductile–brittle transition specific to milling process of brittle material. The experimental results have established that an increase in the cutting-edge radius within a certain range increases the critical feed per edge leading to the improvement of material removal rate in ductile-mode milling. An increasingly negative effective rake angle is desired during milling with larger edge-radiused tool to suppress the crack propagation in the cutting zone to achieve ductile-mode machining. The results also identify the effect of the edge radius on certain other parameters such as critical specific cutting energy, plowing effect and subsurface damage depth to comprehend the ductile–brittle transition phenomenon in ductile-mode milling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.