Abstract
Recent studies have revealed that effective thermal management systems are necessary to maintain the performance, lifespan, and safety of lithium battery systems. A unique and novel modeling approach is presented in this work with the aim of estimating the thermal performance of air-based cooling systems for large-scale lithium battery packages. The overall model consists of sub-models, including an analytical model for battery cells and a numerical heat and flow model for the battery module, which are validated against experimental data and empirical correlations, respectively. The chosen approach implies that the sub-models can operate independently, allowing accurate transient simulations with reduced processing time. The model is employed to evaluate the effect of cell spacing on the thermal performance of an air-cooled battery system designed for a hybrid electric vehicle. The results demonstrate that the maximum temperature within the cells positively correlates with transverse and longitudinal pitch ratios; however, the maximum temperature difference in the module has a negative correlation with these pitch ratios. In contrast, temperature uniformity shows non-monotonic behavior, making it an applicable criterion to balance between temperature rise and thermal gradients. Moreover, considerable temperature non-uniformity is noted in the early rows, which becomes less significant as pitch ratios decrease.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have